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Transition metal catalyzed asymmetric hydrogenation holds a
venerable position in organic synthesis.1 The catalytic asymmetric
hydrogenation of configurationally labile substrates containing
carbon-oxygen double bonds via dynamic kinetic resolution (DKR)
is a highly efficient method to create simultaneously two or more
stereogenic centers in a single synthetic step.2 Initiated by Noyori3

and Genêt4 in the asymmetric hydrogenation of R-substituted �-ke-
toesters, the Ru-catalyzed asymmetric hydrogenation via DKR has
become a useful synthetic method.5 Recently, [RuCl2(diphosphine)-
(diamine)] complexes have been proven to be the most efficient
catalysts for this transformation.6 In the hydrogenation of racemic
R-substituted cycloalkanones, [RuCl2(diphosphine)(diamine)] catalysts
provided the chiral cycloalkanols in excellent enantio- and
diastereoselectivities.6c-6e Good results have also been achieved by
the same catalysts in the asymmetric hydrogenation of racemic
R-substituted aromatic ketones such as R-amidopropiophenones.6f

However, the asymmetric hydrogenation of the conformationally
flexible substrates such as acyclic R-substituted aliphatic ketones has
been far from successful.6g

Asymmetric hydrogenation of R-amino ketones represents one of
the most elegant approaches to chiral 1,2-amino alcohols,1,7 one of
the prevailing structural motifs found in a vast array of biologically
active molecules.8 Recently, we demonstrated that the [RuCl2((S)-
SDPs)((R,R)-diamine)]9 complexes were efficient catalysts for the
asymmetric hydrogenation of racemic R-dialkylamino cycloalkanones
via DKR, providing a highly enantio- and diastereoselective method
for preparing optically active cis-�-amino cycloalkanols.6e Encouraged
by this result, we therefore intend to study the asymmetric hydrogena-
tion of more difficult acyclic substrates, racemic R-amino aliphatic
ketones with [RuCl2(SDPs)(diamine)] catalysts (Scheme 1).

Initially, we chose [RuCl2((S)-SDP)((R,R)-DPEN)] ((S,RR)-1a) as
the catalyst, which has been proven to be very efficient for asymmetric
hydrogenation of racemic R-amino cycloalkanones,6e and the R-pyr-
rolidinyl-1-arylpropan-2-one (2a) as the standard substrate. When the
hydrogenation was performed in 2-propanol in the presence of tBuOK
(S/C ) 1000, [2a] ) 0.2 M, [tBuOK] ) 0.04 M) under 10 atm of H2

at room temperature for 5 h, the substrate 2a was fully converted and
the hydrogenation product (1R,2S)-3a was obtained in 94% yield with
98% ee and high diastereoselectivity (anti/syn 97:3). However, when
the hydrogen pressure was increased to 50 atm, the enantioselectivity
and anti/syn selectivity were improved to 99.9% ee and 99:1 (Table
1, entry 1). Ligand comparison showed that the substituents on the
P-phenyls of the SDPs ligands 1 have no apparent effect on the
enantioselectivity (98-99.9% ee) and diastereoselectivity (98:2- 99:
1) or on the reactivity of reaction. The high efficiency of the catalyst
(S,R,R)-1a was further demonstrated in an experiment with a low
catalyst loading (0.01 mol%, S/C ) 10 000), giving identical ee and
dr values of product, albeit the reaction required a longer time (24 h).

A variety of racemic acyclic R-N,N-dialkylamino aliphatic ketones
2 can be hydrogenated under the optimal conditions, and complete
conversions and excellent enantioselectivities were obtained in all
reactions (Table 1). The R-dialkylamino group of the substrates
imposed a significant influence on the diastereoselectivity of the
reaction. Generally, the ketones 2 having a small dialkylamino group
such as dimethylamino or pyrrolidinyl provided high diastereoselec-
tivities. However, when a bulkier diethylamino group was introduced
into the substrate the reaction produced a low diastereoselectivity (entry
6). The diastereoselectivity of the hydrogenation of ketones 2s (R1 )
Me, R2 ) Et) was also lower (entry 19). It is worth mentioning that
the product 3q can serve as a novel analgesic (Filenadol)10 and the
current hydrogenation reaction provides a practical and enantioselective
approach to this important compound.

Scheme 1. [RuCl2-((S)-SDPs)((R,R)-DPEN)] Catalyzed Asymmetric
Hydrogenation of Racemic R-Amino Aliphatic Ketones via DKR

Table 1. Asymmetric Hydrogenation of Racemic R-Dialkylamino
Aliphatic Ketones 2 Catalyzed by (S,R,R)-1aa

entry R1 R2 R3, R4 prod. anti/synb ee (%)c

1 C6H5 Me (CH2)4 3a >99:1 99.9
2 C6H5 Me (CH2)5 3b 95:5 99
3 C6H5 Me C2H4OC2H4 3c 96:4 99.9
4 C6H5 Me C2H4N(Me)C2H4 3d >99:1 99
5 C6H5 Me Me, Me 3e >99:1 99.9
6d C6H5 Me Et, Et 3f 71:29 99.9
7 C6H5 Et (CH2)4 3g 96:4 99.3
8 4-MeOC6H4 Me (CH2)4 3h 95:5 99.9
9 4-ClC6H4 Me (CH2)4 3i >99:1 99

10e 4-BrC6H4 Me (CH2)4 3j >99:1 99.2
11 3-MeOC6H4 Me (CH2)4 3k 95:5 98
12 3-MeC6H4 Me (CH2)4 3l >99:1 99.4
13 2-MeOC6H4 Me (CH2)4 3m 99:1 99.6
14 2-ClC6H4 Me (CH2)4 3n 92:8 99.9
15 2-BrC6H4 Me (CH2)4 3o 94:6 99.6
16 2,3-(CH)4C6H3 Me (CH2)4 3p >99:1 98
17 3.4-(OCH2O)C6H3 Me C2H4OC2H4 3q 95:5 99
18 Me Me (CH2)4 3r 97:3 97
19 Me Et C2H4OC2H4 3s 89:11 93

a Reaction conditions: (S,R,R)-1a/2/tBuOK)1/1000/200, 5 h, 100% conv.
>90% isolated yield. b Determined by GC or HPLC. c Ee of anti-isomer
determined by HPLC. d 57% ee for syn-isomer. e The configuration of
the product 3j is (1R,2S) determined by X-ray analysis.
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We next evaluated the asymmetric hydrogenation of racemic acyclic
R-N-alkyl/arylamino aliphatic ketones. To date, no direct preparation
of chiral �-amino alcohols from the Ru-catalyzed asymmetric hydro-
genation of R-N-alkyl/arylamino aliphatic ketones has been reported.11

The difficulty for this reaction presumably arose from the unprotected
amino group, which coordinated to the ruthenium center of the catalyst,
resulting in a low catalytic activity.6a,11a The great rigidity and steric
hindrance of spiro diphosphine ligand may prevent the coordination
of the NH group of R-N-alkyl/arylamino aliphatic ketones with the
metal of the catalyst RuCl2(SDPs)(diamine), thereby making the
asymmetric hydrogenation of R-N-alkyl/arylamino aliphatic ketones
possible. Based on this supposition, we investigated the hydrogenation
of racemic R-N-alkyl/arylamino aliphatic ketones 4 with catalyst
(S,R,R)-1a. As illustrated in Table 2, under the established reaction
conditions, different types of racemic R-N-alkyl/arylamino aliphatic
ketones 4 can be hydrogenated to the corresponding amino alcohols 5
in high enantioselectivities (>90% ee) and high anti-selectivities (>91:
9), showing that the catalyst (S,R,R)-1a is effective with a wide scope
of substrates.

The products of this hydrogenation reaction, �-N,N-dialkyl-amino
alcohols, can be easily converted to 1,2-diamines, which are also
important building blocks for the synthesis of chiral drugs.12 For
example, the reaction of amino alcohol (1R,2S)-3a (99.9% ee) with
MsCl in the presence of Et3N, followed by a treatment with NH3 ·H2O,
afforded the diamine (1S,2R)-1-phenyl-2-(pyrrolidin-1-yl)propan-1-
amine ((1S,2R)-6) in 80% yield with 99.2% ee. The configuration of
(1S,2R)-6 was determined by X-ray analysis of a single crystal of its
4-bromobenzenesulfonamide (see Supporting Information, SI), obvi-
ously indicating that this transformation took place through an
aziridinium intermediate.

It is interesting that both enantio- and diastereoselectivities of the
hydrogenation of acyclic R-amino aliphatic ketones are significantly
higher than those obtained by the hydrogenations of R-alkyl substituted
aliphatic ketones and R-N-acylamino aliphatic ketones.13 To explain
the higher selectivity achieved with acyclic R-amino aliphatic ketones,
we proposed a transition state model (TS) which undergoes a hydrogen
bond formation between the dialkyl-amino group of the substrate and
the NH2 group of the chiral diamine in the catalyst (Figure 1). Based
on Noyori’s metal-ligand bifunctional mechanism,14 the hydridic
Ru-H and protic N-Hax of the catalyst are simultaneously transferred

to the carbon-oxygen double bond Via a six-membered transition state,
and the additional hydrogen bonding between the dialkylamino group
of substrate and the protonic N-Heq of catalyst is beneficial to
increasing the selectivities.15 Thus, the hydrogenation favors the
formation of the anti-isomer with 1R,2S configuration, which is
consistent with the absolute configuration of (1R,2S)-3j determined
by X-ray analysis (see SI). The substrate with a bulkier dialkylamino
group, such as Et2N (3f), gave a lower diastereoselectivity, perhaps
due to its steric hindrance, which impeded the hydrogen-bonding
formation.
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Genêt, J.-P.; Pinel, C.; Mallart, S.; Jugé, S.; Laffitte, J. A. Tetrahedron:
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Table 2. Asymmetric Hydrogenation of Racemic R-N-Alkyl/
Arylamino Aliphatic Ketones 4 (R4 ) H)a

entry R1 R2 R3 prod. time (h) anti/synb ee (%)b

1 C6H5 Me C6H5 5a 10 97:3 96
2 C6H5 Me iPr 5b 1 >99:1 99
3c Me Me C6H5 5c 2 >99:1 96
4 Me Me C6H5CH2 5d 8 92:8 92
5 Me Me c-C6H11 5e 2 99:1 96
6 Me Et c-C6H11 5f 6 91:9 90
7 Et Me C6H5 5g 4 95:5 95
8 Et Me C6H5CH2 5h 10 95:5 97

a Reaction conditions are the same as those in Table 1. 100% conv.
>90% isolated yield. b For analyses, see Supporting Information.
c Catalyst [RuCl2((S)-BINAP)((S,S)-DPEN)] gave product 5c with 85% ee
and 92:8 of anti/syn selectivity in 6 h.

Figure 1. Proposed model for asymmetric hydrogenation of R-aminodialky-
lketones.
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